### **Oral Nutritional Supplements in Hemodialysis** Patients

#### Debbie Benner, MA, RD, CSR

May 6-10, 2014



### **Authors**

- Debbie Benner, MA, RD, CSR, DaVita HealthCare Partners Inc.
- Steven M. Brunelli, MD, MSCE, DaVita Clinical Research<sup>®</sup>
- Becky Brosch, RD, CSR, DaVita HealthCare Partners Inc.
- Jane Wheeler, MS, RD, DaVita HealthCare Partners Inc.
- Allen R. Nissenson, MD, DaVita HealthCare Partners Inc.

- Protein-energy malnutrition (PEM) occurs frequently among end-stage renal disease (ESRD) patients undergoing hemodialysis
  - PEM is estimated to occur in 50% to 70% of hemodialysis patients
- PEM is associated with increased risk of hospitalization and mortality

### Objective

To assess the impact of oral nutritional supplements on mortality, morbidity, and nutrition in hemodialysis patients at a large dialysis organization

### **Methods: Study Design**

- A pilot program providing ONS to 3,399 patients with serum albumin ≤ 3.5 g/dL
  - Launched in 408 LDO facilities
  - September 2012 January 2013

#### ONS patients

- Received at least 1 dose
- Propensity matched 1:1 to similarly hypoalbuminemic controls who dialyzed at facilities in which ONS was not offered
- Followed for death, rates of hospitalization and missed treatment, time-to-albumin recovery, and nutritional markers

### **Methods: Matching**

- Propensity score was estimated using a logistic model in which receipt of ONS was the dependent variable and was predicted (as of entry date) on the basis of:
  - Qualifying albumin level
  - Month of entry
  - Age
  - Sex
  - Race
  - Etiology ESRD
  - Access type

- Diabetes
- Charlson score
- Vintage
- Body mass index
- Hospitalization in the prior month
- Hemoglobin
- Phosphorus
- ONS patients were matched 1:1 to controls using a nearest neighbor matching algorithm.
  - Matching was done separately for HD and PD patients to ensure that matched pairs would be concordant on modalities and thereby enable subgroup analysis by modality
- All ONS patients were successfully matched to 1 control. Baseline comparison of ONS patients to matched controls is presented in Table 2.
  - The 2 groups were well balanced on all baseline characteristics

## Table: Comparison of Baseline Characteristics betweenONS Users and Controls in Matched Cohort

| Variable                           |                                     | Control<br>(N=3,399) | ONS<br>(N=3,399) | p (ONS vs<br>Control) |
|------------------------------------|-------------------------------------|----------------------|------------------|-----------------------|
| Age, years                         | Mean ± SD                           | 67.1 ± 13.9          | 66.7 ± 13.7      | 0.24                  |
| Gender                             | Female, n(%)                        | 1,636 (48.1%)        | 1,600 (47.1%)    | 0.38                  |
| Race/Ethnicity                     | White, n (%)                        | 1,486 (43.7%)        | 1,517 (44.6%)    | 0.66                  |
|                                    | Black, n (%)                        | 1,059 (31.2%)        | 1,057 (31.1%)    |                       |
|                                    | Hispanic, n (%)                     | 507 (14.9%)          | 507 (14.9%)      |                       |
|                                    | Other, n (%)                        | 347 (10.2%)          | 318 (9.4%)       |                       |
| Etiology End-Stage Renal           | Hypertension, n (%)                 | 856 (25.2%)          | 858 (25.2%)      | 0.94                  |
| Disease                            | Diabetes Mellitus, n (%)            | 1,725 (50.8%)        | 1,712 (50.4%)    |                       |
|                                    | Other, n (%)                        | 818 (24.1%)          | 829 (24.4%)      |                       |
| Access                             | Arteriovenous fistula, n (%)        | 1,715 (50.4%)        | 1,718 (50.5%)    | 0.98                  |
|                                    | Arteriovenous graft, n (%)          | 549 (16.2%)          | 559 (16.5%)      |                       |
|                                    | Central venous catheter, n (%)      | 1,110 (32.7%)        | 1,097 (32.3%)    |                       |
|                                    | Peritoneal dialysis catheter, n (%) | 25 (0.7%)            | 25 (0.7%)        |                       |
| Diabetes                           | n (%)                               | 2,440 (71.8%)        | 2,436 (71.7%)    | 0.91                  |
| Post-dialysis weight, kg           | Mean ± SD                           | 76.8 ± 21.8          | 77.7 ± 22.2      | 0.08                  |
| Body mass index, kg/m <sup>2</sup> | Mean ± SD                           | 27.2 ± 7.3           | 27.2 ± 7.4       | 0.65                  |
| Vintage, month                     | ≤ 3-12, n (%)                       | 1,220 (35.9%)        | 1,169 (34.4%)    | 0.70                  |
|                                    | 12-48, n (%)                        | 1,119 (32.9%)        | 1,138 (33.5%)    |                       |
|                                    | >48, n (%)                          | 935 (27.5%)          | 961 (28.3%)      |                       |
|                                    | missing, n (%)                      | 125 (3.7%)           | 131 (3.9%)       |                       |
| Hospitalization in prior month     | n (%)                               | 764 (22.5%)          | 779 (22.9%)      | 0.66                  |

# Table: Comparison of Baseline Characteristics between ONS Users and Controls in Matched Cohort (Continued)

|                          |                   | Control        | ONS            | p (ONS vs |
|--------------------------|-------------------|----------------|----------------|-----------|
| Variable                 |                   | (N=3,399)      | (N=3,399)      | Control)  |
| Charlson Score           | 2, n (%)          | 112 (3.3%)     | 111 (3.2%)     | 0.90      |
|                          | 3, n (%)          | 136 (4.0%)     | 152 (4.5%)     |           |
|                          | 4, n (%)          | 344 (10.1%)    | 366 (10.8%)    |           |
|                          | 5, n (%)          | 541 (15.9%)    | 532 (15.7%)    |           |
|                          | 6, n (%)          | 729 (21.5%)    | 708 (20.8%)    |           |
|                          | 7, n (%)          | 675 (19.9%)    | 684 (20.1%)    |           |
|                          | 8+, n (%)         | 862 (25.4%)    | 846 (24.9%)    |           |
| Entry date               | 1-Sept-12, n (%)  | 311 (9.2%)     | 303 (8.9%)     | 0.90      |
|                          | 1-Oct-12, n (%)   | 1,079 (31.7%)  | 1,047 (30.8%)  |           |
|                          | 1-Nov-12, n (%)   | 530 (15.6%)    | 559 (16.5%)    |           |
|                          | 1-Dec-12, n (%)   | 490 (14.2%)    | 499 (14.7%)    |           |
|                          | 1-Jan-12, n (%)   | 434 (12.8%)    | 443 (13.0%)    |           |
|                          | 1-Feb-12, n (%)   | 555 (16.3%)    | 548 (16.2%)    |           |
| Hemoglobin, g/dL         | ≤ 9 -10, n (%)    | 1,169 (34.4%)  | 1,165 (34.3%)  | 0.96      |
|                          | 10-12, n (%)      | 1,967 (57.9%)  | 1,961(57.7%)   |           |
|                          | >12, n (%)        | 246 (7.2%)     | 257 (7.6%)     |           |
|                          | Missing, n (%)    | 17 (0.5%)      | 16 (0.5%)      |           |
| Phosphorus, mg/dL        | ≤ 3.5, n (%)      | 765 (22.5%)    | 768 (22.6%)    | 0.78      |
|                          | 3.5-5.5, n (%)    | 2,227 (65.5%)  | 2,211 (65.1%)  |           |
|                          | >5.5, n (%)       | 372 (10.9%)    | 391 (11.5%)    |           |
|                          | missing, n (%)    | 35 (1.0%)      | 29 (0.9%)      |           |
| Qualifying albumin, g/dL | Mean ± SD         | 3.3 ± 0.3      | 3.3 ± 0.3      | 0.96      |
|                          | Median [p25, p75] | 3.4 [3.2, 3.5] | 3.3 [3.1, 3.5] |           |

### Survival

- Overall 557 patients died during 2,870 patient-years of at-risk time
- Survival was significantly better among ONS patients than matched controls
- ONS patients had 69% lower relative risk of death (HR 0.31[0.25-0.39], p<0.001)</li>

| Group   | HR (95% CI)      | р       |
|---------|------------------|---------|
| Overall |                  | < 0.001 |
| Control | 1 (ref)          |         |
| ONS     | 0.31 (0.25-0.39) |         |
| HD only |                  | < 0.001 |
| Control | 1 (ref)          |         |
| ONS     | 0.31 (0.25-0.39) |         |

Abbreviations: CI, confidence interval; HD, hemodialysis; HR, hazard ratio; ONS, oral nutritional supplementation; ref, reference

### Cumulative Incidence Curves for Death in ONS Patients versus Matched Controls



# Hospitalizations, Missed Treatments, and Albumin Recovery

- Hospitalization rate was 8% lower among ONS patients
- Missed treatment rate was 23% lower among ONS patients
- Time-to-albumin recovery (single value ≥4.0 or 2 consecutive months values = 3.9) was slower among ONS patients versus controls

- Albumin was lower among ONS patients versus matched controls
- nPCR was higher among ONS patients versus matched controls
- Post-dialysis weight was higher among ONS patients versus matched controls
- Serum creatinine was lower among ONS patients versus matched controls

### Conclusion

- ONS provided per treatment is associated with markedly and significantly better survival and missed treatment rates, as well as improvements in some nutritional indices
- These data argue persuasively for administration of ONS to hypoalbuminemic dialysis patients